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A method is suggested to calculate the geometrical and thermodynamical 
characteristics of organic ~--complexes. The interaction energy is considered 
as a sum of two terms: the specific quantum chemical interaction of the 
7r-electron systems depending essentially on the chemical nature of reactants, 
and the nonspecific a tom-atom (van-der-Waals) interaction depending only 
on the kind of atoms belonging to the fragments of a complex. An attractive 
quantum chemical interaction is described in terms of the PPP-method;  the 
van-der-Waals interaction is expressed in terms of the empirical exp-6- 
potential. The geometries of complexes are found by the complete energy 
minimization with respect to six parameters characterizing the mutual orienta- 
tion of the complex fragments. Energies, entropies and equilibrium constants 
of several tetracyanoethylene zr- complexes are calculated by this method. The 
results agree satisfactorily with experimental data. 

Key words: Intermolecular interactions - Molecular complexes - Calculations 
of geometry and thermodynamical properties of complexes. 

1. Introduction 

Theoretical study of the structure of molecular complexes is of significant interest. 
Up to now it has been performed, as a rule, on a qualitative quantum chemical 
level [1]. The calculation using an empirical a tom-a tom scheme involving elec- 
trostatic interactions has been also reported [2]. Only for a few small molecules 
some ab initio calculations have been published [3-5]. 

Typical organic complexes are rather complicated polyatomic species. Their  
computation needs optimization of intermolecular geometrical parameters since 
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the geometrical structure is unknown. For such a computation a semiempirical 
theory seems appropriate. However, the existing standard semiempirical compu- 
tational techniques based on the ZDO approximation fail to be valid in this case, 
as a result of the inconsistent treatment of the nonorthogonality effects [6, 7], one 
of the main components of the intermolecular interaction energy. Therefore, it 
is not surprising that the formation energy of the benzene-tetracyanoethylene 
(TCNE) complex obtained by the CNDO/2 procedure [8] (125 kcal/mole) 
greatly exceeds the experimental value (5.5-7.5 kcal/mole) [9, 10], the calcu- 
lated intermolecular distance (1.75 .~) being quite unrealistic. Similar observa- 
tions have been reported recently [11]. 

Some successful CNDO/2 computations of small molecular complexes have been 
published [12], introducing the intermolecular nonorthogonality effects and the 
dispersion interaction in the framework of SCF perturbation theory [13]. In the 
present communication we suggest an alternative semiempirical method for the 
calculation of ~r-complexes. It is based on the "almost 7r-electron approxi- 
mation". 

The analysis of interactions between or-electron molecules has naturally revealed 
the term corresponding to the interaction of ~r-electron systems, calculating this 
term just in the ZDO approximation [6]. That is the so called stabilization energy 
(SE), the main chemically specific component of the interaction. As calculated by 
a SCF method (i.e. in fact, by the PPP method), the SE includes the effects of 
"chemical bonding" and the main electrostatic effects. The overall interaction 
energy is obtained after supplementing the SE by nonspecific additive terms: the 
repulsion term caused by the nonorthogonality of wavefunctions of the separated 
complex fragments, and also the attractive dispersion interaction. These addi- 
tional energy contributions will be referred to as the "van-der-Waals interaction" 
below. They depend on all valence electrons, tr-electrons taking a principal part, 
since most of the valence electrons are o--electrons. It is important to emphasize 
that the nonorthogonality effects and dispersion forces for 7r-electrons are missing 
in PPP calculations. That is the reason why the calculation of van-der-Waals 
interaction simultaneously for all valence electrons, without separating the o-- and 
or-components, is a consistent procedure. 

The "almost ~-electron approximation" has been used earlier for studying some 
chemical reactions of ~--electron systems [14]. As applied to calculations of 
~'-complexes, the computational procedure is simplified significantly, since it is 
not necessary to take the changes of AO hybridization into account. In contradis- 
tinction to previous works, the nonspecific van-der-Waals contribution is treated 
here in terms of an empirical atom-atom scheme. The procedure of the rather 
similar type has been suggested to calculate the interaction of two benzene 
molecules [15]. 

2. Experimental Characteristics of ~--Complexes 

The summary of experimental data on equilibrium constants of some ~r- 
complexes of TCNE listed in Tables 1-3 elucidates some problems arising in the 
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Table 3. Thermodynamic constants of TCNE complexes with aromatic donors in solution (CH2C12) 

K(22~ - AH - AS 
Donor 1. mole -1 kcal. mole -1 cal �9 mole -1 deg -t Ref. 

Benzene 0.108 3.158 15.02 10 
Naphthalene 0.247 4.364 17.41 10 
Phenanthrene 1.874 11.34 36.79 10 
Pyrene 0.888 4.530 15.43 10 
Biphenylene 0.710 2.6 4.1 20 
Fluorene 19 4.0 7.8 21 

course of their interpretation. Exper iments  are usually per formed in solution. 
Equil ibrium constants, K, as measured  by different methods in various solvents, 
may differ by a factor of order 10. The measured enthalpies, AH, and entropies,  
AS, of formation display irregularities which are minimized when passing to the 
free energies, AF, due to the compensat ion effect. A few gas-phase data [18] show 
that the free complexes seem to be more  stable than the dissolved ones. And  
finally, as the observed characteristics of interaction are small, the relative 
contribution coming f rom tempera ture  dependent  effects may be significant. 
These effects are neglected in a standard quantum-chemical  t rea tment  dealing 
with states at 0~ Thereby,  since one is at tached to the liquid-phase room-  
tempera ture  experiments,  the incorporation of some elements of empirical 
adjustment  in a calculation procedure  is inevitable. In such a situation a simple 
semiempirical  method has certain advantages. 

3. Calculation Technique 

3.1. Geometry 

The energy of the intermolecular interaction of the fragments is essentially less 
than the intramolecular one. Therefore ,  in good approximation,  the fragment  
geometry  coincides with that of the isolated reactants. This allows to describe the 
geometry  of a complex in terms of only six parameters :  intermolecular distance 
r and angles 01, 02, 03, q~l, 92 determining the mutual  orientation of fragments 
(Fig. 1). The geometry  of a complex should be obtained by the complete energy 
optimization with respect to those parameters .  

3.2. Energy 

The following master  formula was used for calculations of interaction energy 

U=A~+Uv.  (1) 

The ~--electron SE, A~, describes the specific quantum-chemical  interaction of 
the complex fragments  and depends on their chemical nature;  Uv describes the 
nonspecific van-der-Waals  interaction and depends only on the kinds of atoms 
entering the fragments.  In order  to compute  Uv we adopt  the a t o m - a t o m  scheme 
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Fig. 1. Parameters determining the 
orientation of the complex frag- 
ments and the rotation of whole 
complex: 0~, 02, 03; qh, ~2, Ca and 
01, 02, ~b3 are rotation angles of the 
first and second fragments and of the 
whole complex around the respec- 
tive space-fixed coordinate axes 
located at their centers of mass. If 
G(Oi) is the operator of rotation by 
Oi around the axis Xi, then generally 
it is accepted that G(01, 02, 03)= 
G(O2)G(O1)G(Oa) (and, similarly for 
other rotations in the systems {Yi} 
and {ZI}). For other notation and 
details see Appendix 

>r, I 
I 

14 V 1"1 

using the empirical exp-6-potent ial  

U v  =- ~. { - A r s r ~ s  6 + Brs e x p  ( -  Crsr~,)}. (2) 
r,s  

The summation is carried out over  pairs of atoms r and s belonging to different 
fragments.  

The h,, has been computed by the PPP method.  Matrix elements of r 

Fockian fi~ are: 

W~+~p.~ ,~+ Y~ (pkk- -Nk)~ ' rk  rr ~ 1 

k # r  

1 
frs :- hrs - 2Prs'Yrs 

(if r and s are the neighbouring atoms of the same molecule or if they belong to 
different molecules) 

re= = --lPr=Vr~ 

(if r and s are nonneighbouring atoms of the same molecule) 

2 2 2 2 ~ - 1 / 2  
~r, = e {(e /3'rYs) + r~,t ; hr= = k~=sr=. 

Here  st,, p,, and rr, are the corresponding overlap integral, bond order and 
intermolecular distance, N k  is the number  of electrons on the p~ -AO of a tom k, 
and e is the electron charge. We used the following values for the parameters:  
W c = - l l . 1 6 e V ;  W N = - 1 4 . 1 7 e V ;  y c = l l . 1 3 e V ;  y N = 1 2 . 3 4 e V ;  k c c  = 
- 9 . 7 7  eV; k c N =  - 1 0 . 1 3  eV. The geometries of fragments were not optimized; 
the experimental  data on bond lengths and valence angles were used. 

All contacts of all ~r- AOs  with account of their mutual  orientation were included 
for intermolecular interactions. 

The standard SCF iterative procedure for systems under investigation was ob- 
served to diverge (the amplitudes of energy oscillations were about  0.5 eV). In 
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Table 4. Parameters of the exp-6-potential (2). 
kcal �9 mole-l; C in/~-a) 

M. V. Basilevsky et al. 

(A in kcal. fik 6 '  mole 1 B in 

Present work Ref. [25] 

Atoms A B C A B C 

c - - c  280 70 000 3.63 331 47 000 3.63 
C--N 280 70 000 3.63 - - - 
C--H 100 60 000 4.32 117 47 000 4.32 
N--H 100 60 000 4.32 - - - 
H--H 30 50 000 5.18 41 47 000 5.18 

order to achieve convergence the "level-shifting" method [22, 23] was applied, 
the theoretical background of which has been clarified in the recent review [24]. 
This method provided excellent convergence ( - 1 0  -7 eW with respect to energy) 
in a few iterations. 

Computations of van-der-Waals energy Uv using the parameters of exp-6- 
potential recommended by Caillet and Chaverie [25] yielded 6.3 kcal/mole for 
the energy of the TCNE-benzene  complex. This value is typical for the gas-phase 
equilibrium (see Table 2). We considered the coefficients Ars and Brs of potential 
(2) as adjustable parameters changing them in such a way that the results of 
computations reproduced experimental data on the formation enthalpies of the 
complexes of TCNE with aromatic donors in solution (Table 3). Thus, the 
solvation and temperature effects were implicitly incorporated in the new values 
presented in Table 4. 

3.3. Equilibrium Constants 

Equilibrium constants, K, for the process described as A + B ~ C were calculated 
according to the standard formula 

ex ( 
QAQB 

where QA, QB and Qc are the corresponding partition functions. So we made no 
distinction between the experimental enthalpies of formation A H  and the calcu- 
lated interaction energies U. The partition functions were calculated as a product 
of elementary partition functions for separate degrees of freedom. The following 
model was accepted: the fragments of a complex were considered as rigid and 
their mutual motions were considered as small-amplitude vibrations near the 
equilibrium point. The first condition allows to describe a complex by only twelve 
independent variables instead of 3 N  cartesian coordinates (N is the number of 
atoms in a complex). Separating the center of mass translations reduces their 
number to nine. It is convenient to start with the following initial set of coupled 
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coordinates (see Fig. 1): 

1 q 4  6 7 
q = 01 = ~1 q = r q = 61 

2 qS q8 = 02 q = 02 = ~2 

3 9 
q = 03 q = 03. 

(3) 

In a small amplitude approximation for vibrations one can present the Hamil- 
tonian of the system in a form 

1 . ~  . v  1 tx v 
H = H o + ~ g ~ , , q  q + ~ k ~ , q  q (4) 

where g,~ are the elements of the kinetic energy matrix, k , ,  represent the matrix 
of potential energy, and H0 is the equilibrium energy of a system; the dots 
designating the time derivatives. Here tensor notations are used (covariant and 
contravariant indices, summation over repeating indices). 

Elements of the matrix k,~ are available from the numerical differentiation of 
the energy of a complex calculated in terms of coordinates {q ~}. Calculation was 
encumbered by the fact that the dependence of energy (1) on angular variables 
showed fast irregular oscillations of small amplitude ( -10  -2 eV). This difficulty 
has been overcome after smoothing the function (1) by averaging over a 
sufficiently large energy interval. 

The kinetic energy matrix for the geometrical model of a complex accepted above 
cannot be obtained by the regular procedure [26]. An account of its calculation 
is given in the Appendix. Solving the vibrational problem for the Hamiltonian 
(4) allows to obtain the frequencies of normal modes and to calculate the 
corresponding vibrational partition functions. 

Our computations showed that the energy of a complex is almost independent of 
the angle 03. This result indicated that the internal rotation of the fragments 
around the Z3 axis (see Fig. 1) is practically free. The vibrational partition 
function for this degree of freedom was calculated as that of the free rotation. 

The internal motions of fragments and the overall rotations of the complex as a 
whole are mixed in the coordinates {q ~}. Solving the vibrational problem separates 
three purely rotational modes with zero frequencies. 

4. Results and Discussion 

The result of our calculations of geometrical and thermodynamical characteristics 
of some complexes of TCNE are presented in Table 5. The comparison of Tables 
3 and 5 shows that the calculated values of the energies of the complex formation 
agree satisfactorily with experimental data (phenantrene presents the single 
exception but that seems to be an experimental error). Nevertheless, the equili- 
brium constants are systematically lowered by a factor of about ten. Our explana- 
tion is that the harmonic approximation (4) overestimates the rigidness of 
complexes. One can anticipate that inclusion of the anharmonicity correction in 
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Table S. The calculated intermolecular distances, thermodynamical parameters and frequencies of 
normal modes for some ~r-complexes TCNE and aromatic donors. (r in/~, energies in kcal �9 mole -a, 
entropies in cal. mole -1 deg -1, constants in 1 �9 mole -a, frequencies in cm -1) 

Thermodynamical parameters 
Frequencies of some 
normal modes 

D o n o r  r K(25~ -- U - A - U v  - - A  s O ) m a  x to  r (.Orni n 

Benzene 3.49 0.013 2.8 1.0 1.8 18 68 59 26 
Naphthalene 3.43 0.019 4.0 1.8 2.1 21 64 59 37 
Anthracene 3.45 0.063 4.4 1.5 2.9 20 58 54 28 
Phenantrene 3.47 0.031 4.6 1.9 2.7 22 59 56 31 
Pyrene 3.47 0.109 5.0 2.0 3.0 21 55 55 28 
Biphenylene 3.50 0.042 4.0 1.7 2.3 20 60 53 21 
Fluorene 3.50 0.012 4.4 1.7 2.7 23 58 55 29 

the calculation of partition functions would change the values of the preexponen- 
tial factors in the right direction without changing the exponent indices. This 
defect cannot be eliminated by readjusting the parameters of the potential (2). 
Modifying their values to fit the equilibrium constants alters the energies 
significantly. In particular, by changing the parameters we obtained either K = 
0.037 l /mole and U = - 4 . 0  kcal/mole or K = 0 . 3 6 1 / m o l e  and U - -  
- 6 . 3  kcal/mole for benzene. 

The relative contributions from the zr-electron SE, A=, and van-der-Waals term, 
Uv, seem to be typical for weak complexes. The same can be said about the 
vibrational frequencies. The maximal and minimal frequencies and that charac- 
terizing the "valence" vibration with respect to parameter r are presented in 
Table 5. 

One general observation should also be mentioned. This is a close resemblance 
between the structures and properties of different complexes. As seen from Table 
5, for all complexes their fragments were separated by a distance of about 3.5/~. 
The fragment planes were always parallel (the angles 01 = 02 = ~1 = ( ~ 2  = 0; we did 
not include the respective figures in Table 5 because of their similarity). Both the 
total energy U and its components A= and Uv were practically independent of 
the angle 03, so the internal rotation in all complexes could be considered as free. 
Even the ~'-electron SE, h=, appeared to be quite weakly sensitive to the nature 
of the donor component.  The latter observation is of particular importance, 
because it does not agree with the concepts of the simple theory of charge transfer 
complexes [1]. For instance, one could expect more significant changes in the 
stability of complexes in the above considered series basing on the values of 
H O M O  energies of the respective donor zr-systems. Moreover, the TCNE-  
anthracene complex does not at al! obey the correlation between the stability of 
a complex and the H O M O  energy of its donor component  as stated by the simple 
theory. This lack of the specificity of w-interaction found in the present calcula- 
tion may be associated with the fact that at a large intermolecular separation all 
interactions between all zr- orbitals of the fragments become very weak and almost 
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equally intensive. The specificity of zr-interaction was recovered when it was 
artificially intensified by shortening the interfragment distance. So we investigated 
the dependence of A on the internal rotation angle 03 in the TCNE-an thracene  
system taking r =  1.5/~ and observed its change by 46 kca l /mole  when 03 
changed by 90 ~ . 

5. Calculation of the Benzene-Carbocyanide Complex 

It was of certain interest to compare  our calculations with some ab initio results. 
The only object  available for such a comparison seemed to be the benzene-  
carbocyanide complex investigated by Morokuma  and co-workers [4, 5]. The 
geometry  of this complex was found by varying a single parameter ,  the inter- 
molecular  distance r, in the f ramework of the STO-3G calculation. The formation 
energy, U, was obtained by the 4-31G recalculation for that equilibrium 
geometry.  The following results were obtained: r = 3.6 ~ ,  U = - 4 . 2  kcal /mole.  

In our calculation we used the parameters  of the empirical potential  (2) presented 
in Table 4. The parameters  for the oxygen a tom were accepted to be equal to 
those of the carbon atom. This simple choice seems appropriate ,  being in 
qualitative accordance with the experience of exp-6 calculations of several 
authors (see for instance Refs. [27, 28]). 

The  calculated geometry and formation energy of the complex are described by 
the following values: r = 3.3 ~ ;  01 = 02 = ~i =~p2 = 0; the internal rotation is 
almost free; U = - 2 . 5  kcal /mole.  This is in reasonable agreement  with the result 
of the ab initio calculation [4, 5]. The latter one neglected electron correlation; 
on the other hand our method has been calibrated in order to fit the experimental  
data. That  is why it was not at all evident which of the two calculations was more  
reliable (unfortunately, we were unable to find experimental  data on this com- 
plex). We tried to achieve better  agreement  with the ab initio calculation by 
varying the oxygen a t o m - a t o m  parameters .  However ,  this appeared to be im- 
possible when the variation was kept  within reasonable limits. 

Appendix: Calculation of the Kinetic Energy Matrix in the Rigid-Fragment 
Approximation 

We use the following notations: 01, 02 and 0 (see Fig. 1) are the centers of mass 
(c.m.) of the first fragment,  the second fragment  and the whole complex, 
respectively; {Xi}, {Y~} and {Zi} are the sets of cartesian coordinates fixed in their 
c.m.; {0i}, {~i} and {~} are the rotational angles of the first fragment,  the second 
fragment  and the whole complex assigned to the axes {Xi}, {Y/} and {Zi}, respec- 
tively; N1 and N2 are the numbers of atoms in fragments,  and N = N1 +N2 is the 
number  of atoms in a complex; 1 --- a ~ N1 and 1 -</J _< N2 are the indices of atoms 
in the first and second fragments,  respectively, and 1 - 3' --- N are the indices of 
atoms in a complex, with 3/= o: for the atoms of  the first f ragment  and y =/~ + N1 
for the atoms of the second one; ms, too, rn v - are the masses of atoms; 
M1 = Y.~ m,, ; M2 = ~o mo and M = Y~ my = M1 +M2 are the masses of the first and 
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the second fragments and of the complex; rl is the distance 001, re is the distance 
002 and r = rl + r2 is the distance O102. 

The condition of the separation of the c.m. translations gives the expressions for 
rl and rz in terms of r: 

rl = r M 2 / M ;  r2 = r M 1 / M .  (5) 

Mass-weighted coordinates x~, ~7~ and ~:~ are introduced as follows: 
i 1 / 2  i 

x r  = m r  xr  
i 1 / 2  i 

r / r = m r  Yr (6) 
~i 1 / 2 i  

= m r z r  

where x/ .  y~ and z/~ are the coordinates of 7 th  a tom in {Xi}, {Yi} and {Z/}, 
respectively. It  is easily seen f rom Fig. 1 with (5) in mind that the mass-weighted 
coordinates are related by the following expressions: 

i i i 1 / 2  
u r  = ~r + 6 3 r m r  M 2 / M  

i i 
rt r = ~r - 8~rm ~/2M1/ M (7) 

i i . ~ i  1 / 2  
x r = r l r + o 3 r m r  

where 6~ is the Kroneker  6~ symbol with ] = 3. 

Using the dependence of the mass-weighted coordinates of atoms (6) on the 
independent  coordinates (3) determining the internal geometry  and the space 
orientation of a complex, one can calculate the elements of the kinetic energy 
matrix g,~ according to the formula [29]: 1 

0~ 0~ 0~ir 0~ir 
g , ~ =  L ~ q ,  ~ Oq" Oq ~ 

i, aOq • Oq ~ + ~ 3 q "  3q ~" 

For that purpose it is sufficient to know the expressions for the derivatives 
(9~v/O q . Let  us first calculate 3~ir/Oq 6, i.e. O~ir/Or. Since u~ and r/o are indepen- 
dent of r, the differentiation (7) with respect to r gives: 

O ~ i a  1 / 2  O~i" = -8~3m~ M z / M  ; -- 6~3m~/ZM1/ M.  (9) 
Or Or 

In order to calculate the derivatives of ~ir with respect to angular coordinates we 
use the well known expression for the infinitesimal rotation vector d l l  of the point 

2 vector n : 

dn~ = ekil d~~kn i 

Mass-weighted coordinates are Cartesian, so their covariant and contravariant components are 
i the same (~v = ~iv etc). 

2 Here and below summation is implied with respect to repeating indices. 
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where  ekii is the Levi -Chiv i t ta  symbol  [29]. Then  for  mass-weighted coordinate  
O, we obtain 

Opi 
0~1r = SkiiP 1. 

Being applied to the coordinates  (6) this gives 

O~iy  _ j 
o~llc - -  E k j i ~  3, 

aO k - ekiixo, (10) 

Oq~ k 

Since x~o are independen t  on O k, and ~ are independen t  of ~o k, relat ions (10) 
can be complemen ted  by 

O ~ i ~  = 0 

O0 k 

a ~l ~___2~ O . 
Oqk - -  

A n d  finally, by differentiat ing (7) with respect  to 0 k and q~ k, we get 

(11) 

O,fi~ Oui~ 
O0 k - 0 0  k 

Oq k - Oq k. 

(12) 

All necessary informat ion concerning O,~iv/Oq v is conta ined in expressions (9)-  
(12). This allows per forming  summat ion  (8). Finally we come out with 

IIg.~ll = 

I(3~ ) 

i(1) 1(113) 12 

i(~) 1(213 ) 22 0 

1 3 3  

xli' _ri~ 
0 1(2~) r(2) 1 2 2  

I l l  ) -12~(~)tit 

1(311 / 132r(1) 1(313) 

" - "  Xi~l , "(~' Y l f  I 1 1 2  

11(221) i(2) re2) 22 1 2 3  

0 

I ~  I ~  ) I ~  ) 
I(~ I ~  ~ I ~  ~ 

32 

MIM2 J i 

[ _ _i~_ _ _ I 

i(2) 1 
12 I 
(2) 
22 I I 0 

I 

0 

Ill [i2 Ii3 
Izl 122 /23 

131 132 133 
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where -,1 r(~), -i~/(2) and L'j are the components of inertia tensors of the 1-st and the 
2-nd fragments and the whole complex in {Xi}, (Y,-} and {Zi}, respectively: 

m,~(xz,~ +x~,~) 
ot 

-(1) 
12 -~" - - ~  F n o ~ X l a X 2 a  

I(1~ ) =E mB(Y~o +Y~a) 
t3 

I(1~ = - Z  mt3Ywy2t3 
t3 

-/11 ~ - ~  2 2 mn,(z2.v + z3~,) 
"7 

/12  = - - ~  mvzl~,Z2-v. 

(The other expressions can be obtained by cyclic permutation of the indices 1, 2, 
3). 
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